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Abstract.

The determination of source signature is a major calibration problem in reflection seismology.
This ‘“‘deconvolution” problem is conventionally approached by way of statistical methods, by
direct measurement, or by the location of a clean reflection in an otherwise quiet part of a
reflection section. We show that a quasi-impulsive, isotropic point source may be recovered simul-
taneously with the velocity profile from reflection data over a layered fluid, in linear (perturbation)
approximation. Our approach is completely deterministic, and does not depend on the presence of
an isolated reflection in a quiet part of the section, as we illustrate with a numerical example.
After describing the algorithm and a numerical implementation, we give a complete mathematical
treatment, which shows that our estimates of source wavelet and velocity profile are stable in a
certain sense. Because of this stability property we conjecture that our approach to simultaneous
estimation of source and medium parameters actually applies to a much broader class of models

than that treated here.






1. Introduction.

A major calibration problem in reflection seismology is that of source-signature identification.
The seismic section depends not just on the mechanical structure of the earth, the elucidation of
which is the aim of reflection seismology, but also on the time dependence and spatial distribution
of the seismic energy source. The separation of these two factors (earth structure, energy source) is
often regarded as a deconvolution problem (‘‘source-signature deconvolution’) and is commonly
attacked with statistical tools (predictive deconvolution, ARMA modeling, maximum likelihood
estimation), which aim simultaneously to suppress other sorts of seismic ‘‘noise’ (notably multiple
reflections). These widely-used methods have been criticized as being based on unwarranted
assumptions about both source and earth structure (Ziolkowski, 1984). An alternate method of
source calibration is actual measurement of the direct wave, or use of a strong reflection in an oth-

erwise relatively quiet part of the section.

In this paper we investigate the possibility that the time-dependence of an isotropic point-
source might be determined directly (and deterministically) from the section, even when no isolated
reflection event can be located. In effect, we ask whether the source parameters can be determined

simultaneously with the earth model. We show that, under some restriction3;the answer is “‘yes.”

This possibility of codetermination of source and velocity arises from the different dependence
of their data influence on offset: that is, the effects of changing the source wavelet, respectively the
velocity structure, move out and scale differently. These effects may be separated algebraically;
there results an equation linking the data section with the velocity, sampled at several different,
but related, depths. The wavelet has been eliminated from this relation altogether. Once the velo-
city has been determined, the wavelet may be extracted easily. On the other hand, functional-
delay equations, such as the one we derive here for the velocity, are not commonplace in the
mathematics of seismology, and it is not entirely obvious that such equations can be solved in a
reasonable sense. Accordingly we give a complete theoretical treatment, ensuring that solutions
can be found computationally as well. We implement an algorithm based on our theoretical

developments, and show by numerical illustration that wavelet and velocity may indeed be



separately determined even when their influence is coexistent in time.

To derive this result, we have imposed some hypotheses on both the earth model and the

energy source. Those concerning the earth model are:
(M1)  that the earth structure varies only with depth (layered medium);

(M2)  that the earth is a linearly elastic fluid, with only the sound velocity varying with

position (depth);

(M3)  that the variation of sound velocity with depth is somewhat smooth.

Concerning the source, we have assumed that
(S1) the spatial distribution of the source is point-like, to adequate approximation;

(s2) the source radiation pattern is isotropic, so that the source is described by a single

function of time (wavelet);

(S3) the source wavelet is quasi-impulsive, i.e. differs from the Dirac delta function by a

square-integrable function.

.
None of these assumptions (with the possible exception of (S1)) is valid for an accurate model

of the typical seismic reflection experiment: The earth is non-layered and inhomogeneous on
interesting length scales and supports shear (as well as compressional) waves. Also the seismic
source often has an anisotropic radiation pattern, and (most important) is bandlimited (not close

to delta).

It seems clear that most of these assumptions could be relaxed, at least to some extent. The
most important and involved step is the introduction of non-impulsive sources. It is plausible on
the basis of velocity analysis (and is carefully justified on theoretical grounds in Santosa and
Symes (1986)) that bandlimited point-source data (with known source) determine a layered velocity
structure, provided that the target structure is sufficiently rich in reflectors (thus is sufficiently
non-smooth). We expect to be able to combine these bandlimited inversion ideas with those

presented in this paper to codetermine bandlimited sources as well. We will further discuss the



extent to which the restrictions M1-M3 and S1-S3 might be relaxed in the concluding section.

We note that Canadas and Kolb (1986) give numerical evidence that the velocity and source
wavelet (and, to some extent, the density) of a layered fluid may be recovered from simulated
seismic reflection data. They do not, however, give a theoretical justification for their procedure.
Ramm (1987) has given a theoretical result for quasi-impulsive sources, which differs from ours in
that it makes use of the low-frequency (rather than high-frequency) asymptotics of the response,

hence is intrinsically restricted to the quasi-impulsive case.

The book by Lavrent’ev et al. (1986) has recently come to our attention (January 1988). In
Section 2.2 the authors consider a problem similar to that studied here. Their work is similar to
ours in that they also find that the recovery of first-order perturbations in medium and source
parameters hinges on the solution of a multiplicative-delay equation like (3.2) below. It differs
from ours in that they do not use the plane-wave decomposition, and restrict their attention to

perturbations about a homogeneous background model.

The model described above is quantified in the following boundary value problem, connecting

p(z) - fluid density
Xz) - bulk modulus e
u(z,t) - particle displacement field
I (¢) - source wavelet:
3%y
p(z gt—é-(a:, t)=V(\z)V-u(z,t))

in {(z,t): z3 > 0}
ANz)V-u(z, t)=—f(t)Hz,, zq)

for z3=0

u(z,t)=0, t<<O0

We write z = 73, and note that (M1) is stated p = p(z), A= X(z). We assume that A = const. ,

1

1
so that ¢(z)=X2p(z) ? parameterizes the medium (M2).

We remark that this is not a significant restriction: the problem of simultaneous determina-
tion of p and X from known (and impulsive) source data is well understood (see e.g. Santosa and

Symes (1987) and other work cited there). Extension of our present results to this more general



case is routine. We have chosen to present the result for A=const. merely to avoid obscuring the

novelty of the present paper with irrelevant complexities.

The hypothesis (S3) is that

F(8) =8(6)+ f4(t)

with f, square-integrable. Causality is expressed by the requirement that f,(¢)=0, ¢t <0 and we

also assume that f,(¢)=0, t > ty,,. Consequently, f defines an invertible convolution operator

(on L0, T] for any T > 0).

We idealize the seismogram as the surface trace of the vertical displacement field

u =(u,, u, u,) viewed as a function of the velocity profile ¢ and the wavelet f:
sle,f]=1u,(z=0).

We shall use the commonplace notation of & - ) to denote perturbations of ( - ); the distinction from
the Dirac delta function will be clear from the context in which it is used. Our main result con-

cerns the perturbational seismogram 8s[c, f ], which is the result of first-order perturbation of the

velocity profile and source wavelet:
8sle, f] = du,(2 =0)

where the perturbation field du satisfies

V-bu = =8f(t)6(zy, z5)

bu =0 t <<O0
and 8p = —268¢ - ¢ 5.

Our main result may be stated:

The velocity profile and source wavelet perturbations dc, 6f are uniquely determined by the

perturbational point-source sessmogram 8s, under hypotheses M1-M3 and S51-S3.



Note that we do not assume the presence of an isolated reflector. Thus the influences of §f
and 8¢ are coexistent in time. Nonetheless they can be recovered separately. In our view, it is
this feature which makes the present result interesting despite the severe restrictions imposed on

our model.

This result concerns the perturbational (‘“variable-background Born approximation’’) prob-
lem. The technique is constructive, and estimates dc, f in terms of §s. It seems clear that regu-
larity results similar to those explained in Symes (1986b, c) could be combined with the conclusions
presented here to yield unique determination of f and ¢ from s. Such matters will be discussed

elsewhere.

We begin the study of this problem by transforming the point-source seismogram to a
plane-wave (p-tau) section, and determining its structure, in Section 2. We use this structural
information in Section 3 to derive a constructive procedure for separate determination of source
and velocity perturbations. We suggest numerical techniques for the solution of least-squares for-
mulations of the inverse problems and present the results of numerical experiments based on one of
the possible implementations, in Section 4. These experiments were performed by Paul Sacks at
Iowa State University. Section 5 contains the proofs of the main matl;;;ﬁatical result and of
several technical lemmas needed in Section 3. We end the paper with a discussion of possibilities

for relaxing the restrictions, and extending the scope, of our results (Section 6).

2. Structure of the Perturbational Seismogram.

‘Our main tool in this paper is the plane-wave decomposition: since the coefficients are

independent of time and of the horizontal coordinates, the Radon integral
ffdz dy u(z,y,z,t+p z)

produces for each p a field satisfying a system of partial differential equations in z, t. In fact, we
are only interested in a finite depth interval 0< z < zp,,,, so without loss of generality we assume

that



.

0<ec.<e(z)<e’, 0Lz

for suitable constants ¢.,c’. In Santosa and Symes (1985, Appendix) it is shown that for

sufficiently small p, the plane-wave component of normal displacement

U(Z,T,p)= ffdl’ dy “z(zyy,z;f'i'l’z)

solves the boundary value problem

82U oy
“Ap L) el =
(p p)a# Xazz 0
oU
—X’(;Z‘(O,T,P)=f(f) (2.1)

11
Recall that the wave velocity is given by c(z)=X%p 2(z). After normalization, we may assume

for the rest of the paper that A =1, so that the mechanics are described by ¢ alone.
The equation (2.1) is hyperbolic only so long as ¢ |p | < 1 (precritical slowness). We define
ZnadP) = sup{z: ¢(z)p <1 for 0< 2" < 2}
and consider (2.1) and related equations only in the slab {(z,¢): 0< 2 < zm,‘gvz )} for each p.

We note that the Radon transform integral given above must in general be modified by the
introduction of a mute or cutoff for large but still precritical p. For a suitable choice of mute, the
components still satisfy the plane-wave equation {2.1) up to an error which may be controlled by

the techniques presented here: see Santosa and Symes (1987).

The plane-wave seismogram (p-tau section) S is the surface {z =0) time history of the plane

wave normal displacement fields
Sle, fl(r,p) = U(0,7,p) .
The topic of our paper is the “inverse”’ problem:

Given a measurement of G of plane-wave reflection data, find a velocity-source pasr

(¢, f) for which



S[c,]](‘r,p):= U(O’T:p)= G(T,p).

This formulation supposes implicitly that the (r, p }-pairs at which the data G is given
are precritical for the sought velocity profile ¢, which presumption is itself a nonlinear

constraint on c.

Now it is natural to think that any feasible measurement G would be contaminated by error,
hence might not fit any model exactly. Accordingly, it is popular to replace the ‘“‘exact inverse”
problem above by a best-fit formulation. A common choice of error measure is the mean square,

which leads to the least squares inverse problem:

Find ¢, f to minimize

[fda,p)S[e, f1(r,p)— G(,p) I?

where dQ) 18 a measure (i.c. possibly nonuniform weight, continuous covariance matriz).

In this paper we shall limit our weights to those of the form
dQ(r,p)=drdu(p).

Thus time points are uniformly weighted in each trace (p = const. ), but we allow the traces to be
weighted according to the measure du(p). For example, if du(p)=dp, then all traces are uni-
formly weighted (over the domain of integration), whereas if d u(p) is a finite sum of point masses,

then the error measure above is concentrated on the corresponding finite set of traces.

The problem stated above is nonlinear. To begin our study in this paper we shall assume
that the velocity is a sum of a (smooth, slowly varying) background velocity ¢ and a (possibly
rapidly varying) perturbation §c. We make a similar assumption concerning the source, i.e. that it
is the sum of a background wavelet f =8+ f,, f, square-integrable, and a perturbation §f . We
shall study the corresponding perturbation 6S in the seismogram, which depends linearly on dc¢,
of .

Formally, to first order, the result of perturbing the velocity profile ¢ «— ¢ + §¢ and the

source wavelet f «— f + 8f is to perturb the plane-wave field U by a field 6U satisfying



a7 3:2 3 a7
85U

- = -0,7,p)=8/(7) (22)

[L_,,z] 9%V _ 9%U _ 28c 8°U
2

c

sU=0, r<0.

The perturbational seismogram 6 S is the surface value of §U:
§S(r,p) =8U(0,7,p).

Presumably S[c +6c,f +8f|=S|c,f]+8S. Conditions under which this is true, i.e. S is

actually the derivative of S are discussed in Symes (1986a).

To understand the structure of the perturbational seismogram 6S, we now introduce asymp-
totic approximations for the various fields. There will result an expansion of 65, which is of cru-

cial importance to what follows.

As mentioned in the introduction, we consider in this paper only deconvolvable source
wavelets f: that is, we assume that the convolution operator with kernel f has a bounded inverse
on L%0, T)] for any T > 0. It is sufficient (but not necessary) that the Fourier transform f(w)
have a uniformly bounded reciprocal. (Of course, we make no such restrictiops on &f .) Since (with

the obvious notation)
S/ = * 55

we could in principle apply the convolution inverse of f to the seismogram, and to the perturba-
tional seismogram. This amounts to replacing 6f by (f*)7'6f, and f by &, in all of the above

equations.

The field U is now the plane-wave impulse-response. As is well-known, this field possesses a
progressing wave expansion: see Courant and Hilbert (1962, Chapter 6) for generalities and Symes

(1981, Section 2) for computation of the present example. We obtain

L
2

1
U(z,7,p) = 2(0,p)%v(z,p)% H(r— T(z,p)) + R(2,7,p) (2.3)

where



c\z

o(zp)= —=tlEl
oV

is the plane-wave vertical wave velocity,

e =[5

is the vertical travel time for the plane-wave at slowness p, H is the Heaviside unit step function,
and R is a continuous remainder term. This expansion and others like it depend for their validity

on the existence of sufficiently many derivatives of ¢, which we assume. See the concluding section

for a little discussion of this point.

To derive the promised expansion of 85, first consider the case §f =0. Then a Green’s iden-
tity argument, detailed in Santosa and Symes (1987, Section 5) results in the expansion, expressed
in terms of v: = blogec =8¢ /¢

55 lsymo (7, p) = v(0,p) {1~ ¢*p*) "7} (Z(7, p)) + K. (7, P) (2.4)
where ¢q = ¢(0) and K, is an operator of Volterra type:

Z(r.p) .
Ka(rp)= [ dzk(p,7,2)2) o~
0

with continuous kernel k., and Z(7,p) is the inverse of the two-way travel time:
z=2(2T(z,p),p) -

On the other hand, a perturbation in f (= ) gives the solution of the inhomogeneous problem

1 gy 07 9?
_— - _ = _lsU =
[( c? P )312 922
asUu
=—6§f
dz I‘_o

U=0, 7<0

which is in turn the convolution of 8f with the solution of the same problem, but with &f

replaced by (Dirac) §. We recognize that the latter problem is identical to (2.1) with f = -4, so
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55 lsemo=08f *Ul.m.

Using the progressing wave expansion we see that this is proportional to the integrated wavelet

(1) = [of

up to an error given by a Volterra operator on ¢. Introducing the velocity trace

aU
V(T,p)= "a_T'(Orrrp)

we can re-write the above relation as

S lamo=V*¢ (2.5)

and V(r,p)=v(0, p) §7) + (continuous error) is an invertible (on L?) r-convolution kernel, known

from the reference seismogram.

Combining (2.5) and (2.4) we get

§S(r,p) = V* é(r,p) = v(0,p {(1 = c*p*) " 1} (Z(r, p)) + K7, p) . (2.6)

Observe that V* has a simple convolution inverse

Vi(r,p) = »(0,p)7'¥7) + ki(7, p),

where k, is continuous and causal for each p. We shall use this fact in the algorithm in Section 4.

3. Separation of Wavelet and Velocity Perturbations

It is evident from (2.6) that the p-dependence (‘‘moveout’ and scaling) of §f and dc, as they
appear in 65, are different. In this section, we draw a consequence: that both §f and §c may be

determined from 4S.

We do not address the quality of this determination here, or even the precise conditions under
which it holds. We want the reader to be aware of the limitations of such formal analysis: it
gives no insight whatsoever into the effectiveness of any algorithms developed to exploit the

theoretical observation. Such insight can only be gained by a rigorous (i.e. correct and complete)
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analysis, which we give in Section 5.

In keeping with the formal approach of this section, we will drop all “Volterra” terms (i.e. K

in (2.6)) as negligible. The sense in which this is actually true is explained in Section 5.

Thus (2.6) becomes

65 ~ v(0,p) [¢(r) - [(1 - czp"’)"q] [Z(T, p)]] .
(Here we have used the remark at the end of Section 2, writing V(r,p) = v(0, p) §z).

Thus, except for scale, ¢ appears without any p-dependence at all. Accordingly, form the

auxiliary data set

G(7,p1,p9) = v(0, p1) 78S (7, p1) — v(0, p2)'85(7, po)
=[-8 ]2 00 - (1= 2) (20000

Suppose that p; > py. Then v(z,p,) > v(z, p,) for all z, so the p,-wave reaches any given depth

earlier than the py-wave. Accordingly,

a(z,py,pe): = 2(2T(z,p1), pa)<z . (3.1)

The transformed auxiliary data set

G(z,p1, po): =(1- ‘32(2)?12)G(2T(z: Pi), P, P2)

is the left-hand side in the functional equation for 7:

G(z,py,p2) = 12)+ Bz, p1, ) (2, Py, P2)) (3.2)

where

Bz, p1,p2) = (1= cX2)p. (1 — c¥a(z, p1, p2))p3) ™" -

Because of the “delay” inequality (3.1), the equation (3.2) gives 7(z), for any z, as a combination
of the data G and the value of ~ at some shallower z(< z). Thus it would seem reasonable that ~
would be entirely determined if we know ~(z) for some very shallow near surface layer 0 <z < z,,
for then we could work our way downward, using (3.2) recursively, to obtain 7 at any depth.

Thus some restriction on the behaviour of 4 near z = 0 would allow us to determine 4.
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While this is true, it is unnecessary to restrict 7 near the surface, because of the properties of

the coefficients o and 8. This result is somewhat technical, and will be given in detail in Section 5.

In sum, the functional equation (3.2) determines ~(z) (without any restrictions). Then +(z)
may be substituted in (2.6), which may then be solved for ¢(r) (for any p). Thus both ~(z) and -

#(7) are determined.

In the next section, we consider the algorithmic implications of this observation.

4. Numerical Solution of the Inverse Problem.

In this section we show how the considerations of Section 3 yield an iterative algorithm for
solution of the least-squares inverse problem in the (7, p} domain, and discuss its implementation

for a special case.

Thus we attempt to minimize, for a given (p, 7) data set g,
T madP)
J(e,f)=IS(e,f)=glli=[du(p) [ dr|S—g[? (4.1)
0

in the notation of Section 3. In fact, we assume here that on T, (p)= T and that the domain of
integration consists of precritical (7, p) pairs for all velocity profiles to be constructed during the
iteration. This assumption a priort restricts the velocity profiles and allows us to use only a
minimal set of ‘“‘safely precritical” data. Obviously relaxation of these restrictions would be desir-

able. For some discussion see Santosa and Symes (1987), Sections 2 and 7.

From {2.6) we can write

DS [e,8)(6c,8f) = E(¢,7) + K(8,7) (4.2)

where
DS [c,d|(6f ,6c) =68

is the directional derivative of the seismogram 5,

E($,7)(rp) =100, p){¢(r)+ [1= o] 260, r))}
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and K is a Volterra-type integral operator with continuous kernel.

We shall suppose that the wavelet is a slowly-varying perturbation of &:
F(r)=8(z2)+/.(2)

where f(z) is square-integrable, as mentioned in the introduction. Thus the integrated wavelet ¢

1s continuous for 7 >0, and satisfies

lim ¢(r) =1.
r—Qt

Then, since

DS [c, (6,8 ) = f * DS [c, 8](Bc (£ *)™8f )

in fact DS[c, f](6c,éf ) is given by the same expression (4.2), where K is modified to include con-

volution by the square-integrable part of f .
The Gauss-Newton method for minimizing J(¢, f) updates a current estimate (c., f.) by
solving a linear least-squares problem:
cy=c . +oc, fi=[f. +8f

where (8¢, éf ) minimizes
“DS[ccrfc](acyéf)_(g—S[ccrfc])”;?' (4‘3)
The minimizer of (4.3) satisfies the normal equations

Ds [Ccyfc]‘DS [cc,fc](&:,éf)

: (4.4)
= DS [ccrfc] (g—S[CC,f])

where DS° is the adjoint of DS (regarded as a linear map acting on (¢,7)) from

L0, T} x L?[0, Z] — L0, T| X supp dp, d d p(p)).

Since K in (4.2) is Volterra, it represents a small perturbation if Z, T are small enough.
This suggests replacing DS and DS’ in (4.4) with the simpler operators E and E°, with the latter

given by
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E’® = (E/®, E/®)
EJ¥(r) = fdp v(0,p) ¥(7,p)

B:0(:) =2 du(p) ",,“Z;’,’J;‘Z‘ff ot

It follows from the heuristics of Section 3 and the estimates in Section 5 that E°E is inverti-

ble — in fact positive definite -~ and E and E° are easy to evaluate. Thus the modified normal

equations

E'E(4,7) = E'(g = S[e., 1.]) (45)
are uniquely solvable, and an iterative method like conjugate gradients should be quite efficient.
In rough outline, the resulting algorithm is: repeat until convergence
(1)  compute the seismogram S|c, f];
(2)  solve the modified normal equations (4.5) for ¢, 7;

(8)  update ¢ «ce?, f — f + ¢ go to (1)

Essentially the same approach (replace DS by E) is used with successi)y Sacks and Santosa

(1987) in recovering ¢ alone (they consider the ‘“‘consistent” case and solve a functional equation

but the idea is very similar).

Since the replacement DS +— E involves only a small change for 7 and z small, we would
expect this algorithm to behave like the Gauss-Newton iteration near 7=z =0. The estimates of
Section 3, which show that DS is bounded below, would suffice to show that the Gauss-Newton
algorithm is convergent if S were differentiable. Unfortunately, differentiability of S requires more
constraints on ¢ than we have included here -- essentially, ¢ must be relatively smooth. The rea-
sons for this,.and a convergence-inducing regularization of the least-squares problem, are discussed
in Symes (1986¢). Granted that this regularization has been implemented, either by restricting the
class of admissible ¢’s or by adding a penalty term to J, Gauss-Newton will converge and thus so

will the modified algorithm given above.
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We will now consider a special case of this procedure. More general examples will be

explored elsewhere.

We take (for p, > p,>0)

du(p)=6(p—p1))+6(p —p2)

which amounts to choosing for our data exactly two plane-wave traces. Now we should have ““just
enough” data to solve the problem: two time series to determine two time series. In fact, a minor
modification of the discussion of Section 3 leads to the conclusion that, for appropriate z and 7

intervals, the mapping
[¢] [Em) (P1,°) ]
1) EG) (p20)
is invertible (as is the analogous map with IE replaced by DS|e¢, f]). It follows that E’ is inverti-

ble as well, so the modified normal equations (4.5) are (in this special case) equivalent to
E(¢v=9~-S[e,f] (4.6)
which is an approximation to
DS e, f)(6e,5f) = g =S [e,f]. (4.72)
Now (4.7) defines the Newton update for the functional equ_ation
Sle.f1=9 (4.7b)

so we would expect iterative use of (4.8) to yield an approximate solution of this functional equa-
tion, rather than merely a least-squares solution. This is precisely the analogue of the algorithm

presented in Sacks and Santosa (1986).

The prescription for solving (4.6) is actually given in Sections 3 and 5; in outline, repeat until

convergence the following steps:

(1) Create the auxiliary data set

G(r)=V *(g=S[e,fNrp)—Vi* (g =S, f])r p2) (4.8a)
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where V, is the convolution inverse of the (current) velocity trace;
(i)  Create the auxiliary data set

G(z) = (1—c(2)*p?) G (2T(z,2.));

(iif)  Solve for 4 the functional equation

G(z) = v(2)+B(z)7(a(2)) =: (I+M)7(z) (4.8b)
where

a(z) = Z(2T (2, p1) po) (4.9)
8(z) = 1-c(z)%f

1-c¥a(z))ps

using the Neumann series

I+T)" = i:)o (- (4.10)

the convergence of which is guaranteed by the properties of @ and 8 and by Lemma 1

of Section 5.

(iv) Compute ¢ from the relation

e —

v+ {(g =S e, fPlr,p) v (0,p) [(1 - C"’p?)“'r](Z (T’Pl))}

= ¢(r) ;
(v)  Update ¢ and f:
¢ +— ce’

f— [+,

Remark. These steps may be simplified further by  noticing  that
Vi(r,p)=v(0,p)'6(r)+ k\(7,p), as noted earlier, so that the convolution V; * may be replaced
by multiplication with »(0,p)™" at the cost of another (“Volterra”) error of the type we are

already ignoring. This was also done in Section 3.

We have implemented a single step of this procedure. We compute the plane-wave seismo-

gram S [c, f] using a standard leapfrog finite-difference method, applied to the first-order system
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equivalent to the wave equation, in which the velocity is one of the dependent variables. These and

other functions were represented by grid-functions on suitable space-time grids.

To obtain the unknown é¢(z) we must compute the function G(z), defined in (4.8a, b), then
evaluate the series (4.10). The compositions with travel-time, and with the depth change-of-
coordinates (4.9), are computed using piecewise linear interpolation, the accuracy of which is com-

patible with that of the difference scheme. We replaced convolution with V by its discrete version:
(V *8)(r;) ~ A7 V4,

and deconvolution by V (i.e. convolution with V) with the solution of this triangular system by

back-substitution.

A synthetic example of this procedure is presented in Figures 1-5. Figure 1 shows the refer-
ence velocity ¢ and the velocity to be recovered ¢ + 8¢, and Figure 2 shows the corresponding
reference and perturbed wavelets. for the two slownesses we chose p; =0 and p, =.4. In Figure 3
we show S [¢, f|(7,p;), i =1,2 and g(r,p;)=S [c + ¢, f +6f)(r, p;), { =1,2.

The velocity perturbation 8¢ is computed as discussed above; it was necessary to use three
terms in the series (4.10). The resulting estimate of ¢ + 8¢ is displayed in Figﬁre 4, along with the

exact velocity profile. Finally, the exact and recovered wavelets are shown in Figure 5.

We emphasize that this example illustrates our contention that the source wavelet (perturba-
tion) may be recovered even without the presence of a strong, clean reflection in an otherwise quiet
part of the section. In this example, the perturbations é¢ and 4f yield trace perturbations &s

which are completely time-coincident.

Note that in the interesting special case that ¢(z)=1, f(t)=§t), the above procedure

simplifies substantially, since S [¢, f] can then be computed exactly.

Since this procedure approximates one step of Newton’s method for the functional equation
(4.7b), we would expect the accuracy to degrade as ¢ becomes larger. To illustrate this degrada-
tion, we show in Figure 6 the perturbed surface traces S [¢ + 8¢, f +6f ] for p,=0, p, = .4 and for

6c and §f representing 1% of the “energy’” (L%-norm) of ¢ and f. The recovered wavelets and
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velocity are compared with the targets in Figures 7 and 8. Figures 9, 10, and 11 repeat this com-

parison for 10% perturbations §¢ and 6f .

5. Estimation of the Wavelet and Velocity Perturbations.
Our aim in this section is to show that the differential section 5 dominates the perturba-
tions ¥ = dlog ¢ and ¢=f6f:

Hell*+ v lIP< Cllés |

where the vertical bars denote appropriate L%norms. Such estimates are necessary to ensure
stable linear estimation of §¢ and 8f, and also form the heart of the construction of nonlinear

least-squares estimators for ¢ and f.

Our derivation will be constructive, and will justify a computational technique which we

explored in the last section, as well as the heuristics of Section 3.

Recall that

1
v(o,p) 6(T)+kl(frp) .

Vl(rr P) =

is the convolutional inverse of V(r, p), with k, continuous and causal. From the structure of V,

and the expansion for 65 in (2.6), the auxiliary data (Section 3) must have the form

G(rp1,p2) = (1 —c2p) v (Z(7, p1))

(5.1)
—(1=c2pa) ™ (Z(r,p2)) + K7 (7, p1, P2)

where K, is an integral operator with piecewise continuous kernel k(p,, ps, 7, 2) supported in

{0< z<max(Z(r,p1), Z(r, p2))}. This last term was dropped in Section 3.

We have already indicated that when p, >p,,

a(zrplypZ): = Z(2T(zrpl)vp2) <z.

We will now quantify this inequality.
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The quantity «(z,p,, ps) is crucial to the argument which follows: it gives the depth
reached by a wave traveling at the slower wave speed v(-, py) in the two-way time taken by a
wave traveling at the faster wave speed v(-, p;) to reach depth z. thus it represents the “spatial
delay” caused by replacing the (faster) v(-, p,) by the (slower) v(, py). We shall assume that we

consider only pairs (7, p) for which z = Z(7, p) satisfies

——p?>A% for 0< <z (5.2)

for some fixed A > 0. Denote by zpma(p) the largest z for which (5.2) holds.
To take into account the possibly finite duration of the p-7 traces (0 <7< TP )), set
Zmax(P) = Min (2 maelp ), Z(Tmal(p) p)) -

(Note that z n,(p)= oo, for instance, for p =0, if ¢ is bounded on 0<z <00 and Tpa(0) = 00).

Correspondingly, set

Tmax(p) =2 T(Zm“(p ): P) .

Then for 0< z < z,(p) a little algebra yields

2 e
Cs
T (5,092 (L+ (o2 = 23)) T (2,9),
whence
Z—Z(2T(Z,pl),p2) Z Ca [T(ZVPQ)— T(zrpl)]
cd '
> (pf —23) T (z,p))
edA
> ——(pf —pf)z
Thus
a(z,p1,p9) <o’ (py,p2) 2 (5.3)

|

with 01'=1—Zc.A(p12 —p#)< 1. Similarly, it is easy to see that o’>a. >0 for some a.

independent of z, p.
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Recall the definition of G(z, p, po) and its representation (3.2):

G (z,p1,p2): = (L= cX2)p?) G(2T (2, p1), p1, P2) -

(5.4)
=7(2)+B(z,p1,p)7(a(z, p1, p2) + K27 (2, p1, P2)

where K; is another integral operator with piecewise continuous kernel ko(p,, po, z, 2°) supported in

{0<2’< 2}, and

,B(Z, 21 p2) = (1 - cz(z)plz)(l - cz(a(z, Py pZ)) p22)-1 ‘
(Thus (5.4) is the precise statement of which (3.2) is an approximation.) Note that

1-c%0)p?
B(0,py1,p2) = t%o;:% <l1. (5.5)

Now it follows from (5.3), (5.4), (5.5) and Lemma 3 below that

”7 ”L2[0'zn‘x(pl)] S C'l Ilé( HPu p2) ”LQ[o'zmﬂ(pl)l

S 02 ”G(.rpl’p2) “L2[0',"“(pl)]

< oy 1155(- (55)

,P1) IlLﬁ[o,r,,“(pl)]
+ 116S(-, p2) “L"’[o,rn“(t’z)l} )

.

dently depend on ¢., A, and p —p$ > 0.

To express the dependence of c and §f on the entire precritical p-tau section, choose a posi-
tive measure d 4 and set
P rax Tmax(P}
6S1I2= [ du(p) [ dr[6S(r,p)|?.
0 0

Thus || ||Z is a weighted mean-square error measure. For example, if we choose du(p)=dp
(Lebesque meésure), the all p-tau traces are weighted uniformly, whereas choosing du(p) to be a

linear combination of point masses has the effect of selecting a discrete set of slownesses.

Now suppose that for some ¢ > 0,

{(p1,p2): |pP1—=pal =€} N (supp duX supp dp) #0 .
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Let pmin=tf{|p |: p,p + €€ supp u}. Then from (3.6) follows immediately the estimate

”'7”:210',““(?““)]
max| P 1) Trrd P2
<Co [ du(py) [ dupy) fdr |G (7, p1, p2) |
Ipy=pyI>¢ 0 (5.7)
< Cs |los |IE

where C, and Cg depend on G and p as well.

Perhaps a refined analysis of these constants is possible, in the spirit of Santosa and Symes

(1987).

Finally, with v known, ¢ can be extracted from any of the components via (2.6), whence esti-

mates for ¢ follow immediately.

To complete this section we give estimates needed above, which establish the invertibility on

L? of operators of the form

I+T+ K

whereTlis multiplicative-delay: e

with a(z)<a’ < 1,0< 2z <1 and K is an integral operator of Volterra type

Kﬂ:):{d;k(z,c)u(c)-

For convenience we restrict our attention to the scalar case. Analogous results for vector-valued

functions follow from trivial modifications of the proofs. We begin with the case k¥ =0.

Lemma 1. Suppose that a, 3 € C'[0, 1] satisfy

(2) for somea., o’ with0 < a.,a’ and a’ <1,



(3)  BOYa(0) * < 1.

Then for any p < 1, the operatorTE L?[0, 1] — L?[0, 1] defined by

T (2) = B(z) u(a(2))

satisfies

[ 1, < u

1
for some N depending on |1 ([ g1 118 1] g @er ", BON@(0) 7, and .

Proof. Define sequences a,, 8, in C'[0,1] by

ag(z) =z
ay(z) = ofz) for 0<z2<1, n>1
@y (z) = af@s_i(2))

a_(z)=0a7Y(z) for 0<2z<a(l)
a_,(z) = a—u+l(a—l(z)) for 0<2z<a,(l), n > 1

T

Pi(z) = B(z)
Balz) = B(z)Ba(a(z))| for 0K2z2<1, n>1
= T (e () |
Then
T u(z) = Ba(2) u(aa(z)) -
Note that

an(z) Ca'any(z)< - <(a')z, 0Kz <1

so that a,(1)<(a")* — 0 as n — 00. Choose 6 so that for 0< z <6,

B(z)(e(2)) * < %[1+ﬁ(0)(a'(0))—7]= =<1

and select n so that (a”)* <6.



Note that

Note also that if z € [0, a(1

Thus

Set

Then

on [0, ay(1)]. Also note that, if z €{0,ay(1)] and k > n, ay_y(2) = ap_n(an(w))

some w € [0,1]. Thus

23

ay =0 oy,
n—1

= ... = IT a"a,,
k=0

)], then

a;j ca(z) =a;4(z), 7=012, -

1
HTNu [|2= [dz |Byu cay|?
0

apn(1)
- ey
7 oy
apn(1) N1 .
= f H |:8' ak—NI ] I
0 k=0 «
-1
= |18(e) ? &

’1 [8 ap_n|?

k—O o CQEp_N

<c’

|8 *ayn|?

&"&k_N
for k>n, 0<z <=ap(l).

(z2) <X\

Taken together, (5.8), (5.9), and (5.10) imply that

for N>n. If

I 115 < oAM= [ |ip

(5.8)

ap(w) <6 for

(5.10)
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log C' —log p
N>n+ (“Tog V)

then

”]IN“ ”p < II“ ”p

as required. Clearly C', X\ and n depend on the stated quantities.

We now consider operators of ‘“Volterra” form, that is,

Ku(z) = [dck(z,¢)u(s) .
0
As is well known, for continuous kernels k, such operators have spectral radius zero as operators

on L?. See e.g. Widom (1969), p. 9-11.

Actually, slightly less than continuity is required. We consider operators K defined by ker-

nels k, possibly matrix-valued, for which the function
k(z) = k(- 2)
lies in C°([0, 1], L?[0, 1]) with the property that supp ¥ (z)C[z,1],0<z <1.
Note that the Volterra property is equivalent to the statement that
supp v C [21,1] = supp Ku C [z,1] .

Lemma 2. Suppose that k € C%([0, 1]; L?(0, 1]) satisfies supp ¥ (z)C [z, 1] and define for u € L¥0, 1]
1
Ku = [dz k(z)u(z)€L?0,1] .
0
Then for any positive p < 1 there ezists a positive integer N depending on
Jurp HE(2) 1 20,

and on u, for-which

HKY l; < 1.

Proof. (This is a small modification of standard argument. See e.g. Widom (1969).) Define

the iterated kernels £ , by



25
El = E
El(zl)=fd2k~l—l(z)k(zl!z) n =273y4
One easily verifies that £, € C%[0, 1]; L?[0, 1]). Because of the observation preceding the state-
ment of the lemma, supp ¥ ,(z) C [z, 1] as well.

Note that

k(1) ] = fdz Fy(2)k(z, ) |l

= || [ dz F(z) k(z, ) ||

1
< [z K@) k(2,2 |

1
S Ofdl lk(Z,Zl)I

%

1
< 02(1—21)2

n
28 (1 F)
where we have written G=o§“§1”k.(z)”' Assume that ||k~,~(z)||$—0—(l—£L,

1
(n)?
7=1,2,...,n. In general, -
1
E iz |1 < [dz [1EA(2) 1] [K(z,2) |
%1
Cm+l 1 %
< T fdz(l—z) |k(zyll)|
(n)?
1
o+ |t 2
< = (Jaz(1=2)" | |E(z)]]
(ny?
On+2 n+—
= 1 (1—21)
((n +1)?
Thus ||K" || < 1 for large n, as desired. q.ed.

Lemma 3.
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Suppose that k is a Volterra kernel as described in Lemma 2, andIl is a multiplicative delay

operator defined by scalars a, B obeying the conditions of Lemma 1. then
I+T+ K

18 tnvertible: in particular, for some € > 0 depending on the quantities described in Lemmas 1 and

2,
HE+T+ K)u || 2 € ||u ||

for u C L%0, 1].

Proof. The convergence of the Neumann series for I +I'in operator norm is a consequence of

Lemma 1. Thus (I+T)~'K is a bounded operator on L?[0, 1], given by a kernel
ki(2) = (T+T)7Fof2) .

The Volterra property of k', follows from the delay property (@ < 1) of [, and an estimate for k,

in CY([0, 1]; L*[0, 1)) follows directly from Lemma 1 as well. Thus

HE+T+K) u || = ||+ + (T+T7K) v) ||
26 ||(I+(@X+7'K)u || \"
2ellull
by the application of Lemma 2. q.e.d.

6. Discusston.

In this section we discuss briefly the consequences of weakening the hypotheses M1-M3, S1-S3
stated in Section 1, which underlay our arguments but which are unacceptably restrictive for prac-

tical application.

The extension of the perturbational results to nonlayered background media is straightfor-
ward, to some extent, so long as the background is smooth. In some sense the literature on migra-
tion is concerned exactly with this extension: for some recent, mathematically correct results for

the fixed f case see Beylkin (1985) and Rakesh (1986). Results analogous to those presented here
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should be achievable in this context. The (full) nonlinear nonlayered problem is much more

difficult; for some limited results see Sacks and Symes (1985), Symes (1986a).

The isotropic elasticity model is the general choice for the “premium’ model level; see e.g.
Tarantola (1984). Some results on the determination of a layered elastic medium from various
point-source data sets may be found in Clarke (1984), Yagle and Levy (1986), Carazzone (1986),
and Sacks and Symes (1987). On the other hand, at least transverse, and possibly more general,
anisotropy is evident in reflection data in some locales (Thomsen (1986)); Coen and Meadows
(1985) give some results concerning anisotropic elastic inversion. We see no difficulty in extending

the results reported here to these more general layered models.

The smoothness question is quite interesting and is presently inadequately understood.
Symes (1986c) gives a review of the extent to which smoothness constraints can be relaxed for a
single-plane-wave, layered medium problem, and Sacks and Symes (1985) gives some idea of the
difficulties which arise in the study of several-dimensional problems in the presence of limited
smoothness. An analytic approach to the nonlinear problem requires that this issue be addressed,
as perturbations and backgrounds must then be regarded as having the same degree of smoothness.
On the other hand, nonsmoothness may have very favorable consequencé%?""as will be discussed
below in relation to band-extrapolation, and must certainly be regarded as a feature of the actual

parameter distributions in earth materials.

As mentioned in the introduction, the point-source assumption seems adequate for reflection
seismology on physical grounds. On the other hand, common land and marine energy sources are
strongly anisotropic. To some extent this feature might be modeled by a multipole source term,
and the moment tensor components recovered by a generalization of our technique. This seems an

important matter for further work.

Perhaps the most unrealistic assumption of our work is S3 (quasi-impulsive nature of
sources): it is simply violently wrong. Typical reflection seismic sources have significant energy
content in the range 4-60 Hz, at best. Thus a reasonable isotropic point-source model should

involve a very non-impulsive wavelet.
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In the last several years, considerable numerical evidence has emerged to support the conten-
tion that bandlimited point-source data does determine layered velocity profiles by least-squares
data fitting: see for example McAulay (1985) and Kolb, Collino, and Lailly (1986). Santosa and

Symes (1986) give a comprehensive analysis of this problem, and show that success of the least-

squares approach is crucially dependent on
(1) sufficient (precritical) aperture and

(i)  sufficient reflector density, i.e. sufficient lack of smoothness.

Thus the nonsmooth distribution of parameters may have as a positive consequence the feasibility

of seismic inversion.
We believe that the ideas of this paper and those of Santosa and Symes (1986) might be syn-

thesized to obtain codetermination of velocity profiles and bandlimited point-sources, under

appropriate conditions. In support of this conjecture we cite the numerical experiments of Canadas.

and Kolb (1986) who solved this problem numerically via least-squares data fitting.
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11.

FIGURE CAPTIONS

Reference and perturbed velocity profiles for first set of experiments (Figures 1 - 5).
Reference and perturbed wavelets for first set of experiments.

Reference and perturbed traces for p =0.0,0.4.

Comparison of exact and recovered velocity profiles from data of Figure 3.
Comparison of exact and recovered wavelets from data of Figure 3.

Perturbed traces, p =0.0,0.4; 1% r.m.s. perturbation in ¢(z), f (¢). Reference traces same as
in Figure 3.

Comparison of exact and recovered wavelets from data of Figure 6.

Comparison of exact and recovered velocity profiles from data of Figuxe 6.

Perturbed traces, p =0.0,0.4; 10% r.m.s. perturbation in c¢(z), f(¢t). Reference traces same
as in Figure 3.

Comparison of exact and recovered wavelets from data of Figure 9.

Comparison of exact and recovered velocity profiles from data of Figure 9.



PERTURBED VELQCITY
—— — — - UNPERTURBED VELOCITY

1.4

0.9 . | .
)

[



PERTURBED WAVELET
— — — - UNPERTURBED WAVELET

1.10

1.00 —

0.90 _

.«-.,.



1
O

UNPERTURBED TRACE; SLOWNESS p

_  __ _PERTURBED TRACE;  SLOWNESS p = .4
.. UNPERTURBED TRACE ; SLOWNESS p = 0.
. _ PERTURBED TRACE:;  SLOWNESS p = .4
-0.80
J
N\
\/ .~
\ Y AT\
T AV
20 L .
\ T~ —
/ﬂﬁm\-f-/,l .................
o
-1.60 I _
0 { 2

V.
V0
i

._ﬁ



1.4

0.3

__ —_ — - PERTURBED VELOCITY
RECOVERED VELOCITY

DEPTH



— — — - PERTURBED WAVELET
RECOVERED WAVELET

1.10

1.00

| S

0.50

0 TIME e

”,,._.J,,:;,

(@8



Wz_ m = i,
e e —_ - SLONNE SS5p=.4
-0.95 :
Y.
e — ]
—_— P
./\'//l(\\
-1.05 i—
o s T —
/I,\///..\I \
~__
-1.15 | .v
0. TINE 2

SURFACE TRACES
1% PERTURBATION

M—.W.VAN_.A “4



COMPUTED SOLUTION

e — — - EXACT WAVELET

1.01
j
S \/
\ >,
1.00 ¥ \ ) R —
\
Y,
0.99 L . |
0
TIME

1% PERTURBATIGN



COMPUTED SOLUTION
— — —— - EXACT VELQOCITY PROFILE

1.030
j
N
A

./

\
{.000 | / o

\
0.580 L |
G. DEPTH 1

% PERTURBATION

_ A ﬂﬂ/
,.@),F\
y



SLOWNESS p = 0.
_ SLOWNESS p = .4
-0.80
/ ) \\ ./// ~—
\/ , \\ /
-1.10 FA. /\l \\ N~
NS
<
\ \
\ —~
\ /
/
/..\
-1.40 _

TIME
SURFACE TRACES
10% PERTURBATION



COMPUTED SOLUTION
— — — - EXACT WAVELET

1.10

\
HaoK\\\// I~
/ x\/\ /
\/
\_ .

0.90
0 TIME

10% PERTURBATION

_.nu. w( fo .



COMPUTED SOLUTICN

—— - EXACT VELGCITY PROFILE

1.3
7\ /
/7N
\K\ /,
e \
Zn&\\ \
/ \ \\\\\1\
,/ \ \\
/WV(U\\\\
0.8 w
0.

DEPTH
10% PERTURBATION

| O )
.

1 a\f {C # _





